Immunotherapy plus a galectin-3 inhibitor improves anti-tumor immunity: Insights from mice and a first-in-human phase I clinical trial

William L. Redmond, PhD
Associate Member, Laboratory of Cancer Immunotherapy
Director, Immune Monitoring Laboratory
Earle A. Chiles Research Institute, Providence Cancer Center
william.redmond@providence.org
@wwredmond4; @ChilesResearch
Disclosures
(Research grants, consulting, and/or royalties)

• Galectin Therapeutics, Merck, Nektar Therapeutics, Tesaro, IRX Therapeutics, CSRA Inc.
Immune-modulating antibodies

Diagram showing the interaction between Agonist antibody, T cell, Inhibitory receptors, Activating receptors, Blocking antibody, Dendritic cell co-stimulatory receptors, and APC.
Galectin-3 and cancer

- Gal-3 is a lectin (carbohydrate binding protein) that is shed by tumor cells and suppresses “killer” T cell function
- Promotes angiogenesis and spread (metastasis) of cancer cells
- Highly expressed in a variety of tumors
Immune suppression via galectin-3

- Tumor
 - Promotes Angiogenesis and Metastasis
 - Decreases Apoptosis
- Macrophage
 - Promotes M2 Polarization
 - Increases Chemotaxis
 - Enhances Gal3 Secretion
- Gal-3
 - T cell
 - Apoptosis
 - Reduces TCR Signaling in CD4
 - Gal-3
Galectin-3 inhibitor (GR-MD-02)

• Developed by our collaborator, Galectin Therapeutics, Inc. (http://galectintherapeutics.com)
• GR-MD-02 is considered a Non-biological Complex Drug (NBCD)
 – A glycopolymer (polysaccharide) derived from USP Apple Pectin
 – Drug binds to and inhibits galectin-3
• GR-MD-02 is being investigated in three galectin-3 dependent indications
 – Non-alcoholic steatohepatitis (NASH) with advanced fibrosis
 • Completed two Phase 1 and one Phase 2a trials
 • Phase 2b clinical trial in patients with NASH cirrhosis completely enrolled with top line data to be reported in December 2017
 – Severe skin disease, including moderate to severe plaque psoriasis and severe atopic dermatitis
 – Combination cancer immunotherapy
Does immunotherapy plus Gal-3 inhibition augment anti-tumor immunity?
GR-MD-02 plus checkpoint blockade

Model

4T1 (mammary carcinoma)
MCA-205 (sarcoma)
TRAMP-C1 (prostate)
B16/F10 (melanoma)

+ aCTLA-4/aPD-1/aPD-L1
(d4,6,8)

+ GR-MD-02
(2.4 mg/dose)
(d4,6,8,11,13,15)

Tumor growth/survival
Reduced tumor burden and increased survival following GR-MD-02 plus checkpoint blockade
Combined GR-MD-02/aOX40 therapy to augment anti-tumor immunity

Model

C57BL/6

+MCA-205 (sarcoma; sq)

+GR-MD-02 (2.4 mg/dose) (d4,6,8,11,13,15)

+aOX40 (d4,8)

Tissue harvest (d12)

• Lymph nodes (flow)
• Tumor (flow, CBA, mRNA)
• Serum (CBA)

Tumor growth/survival
Combined GR-MD-02/aOX40 therapy improves survival
Combined GR-MD-02/aOX40 therapy reduces spontaneous lung metastases

Model

+4T1 mammary carcinoma (TNBC; mfp) +aOX40 mAb (d4,8) harvest lungs (d26) +GR-MD-02 (2.4 mg/dose) (d4,6,8,11,13,15)
GR-MD-02/aOX40 increases CD8 T cell proliferation

Lymph nodes

- Total
- GrzB+
- Ki-67+

Tumor

- Total
- GrzB+
- Ki-67+

GR-MD-02/aOX40 increases CD8 T cell proliferation.
Effects of GR-MD-02/aOX40 on cytokine/chemokine profile (tumor)

- CCL2: promotes monocyte recruitment to TME; suppresses T cell responses
- CCL11: Gal3 induces CCL11 and regulates eosinophil trafficking
- IL-28 (type III IFN): associated with improved anti-tumor immunity
Effects of GR-MD-02/aOX40 on cytokine/chemokine profile (serum)

- IL-23: promotes Th17 CD4 T cells
- CXCL10: Binds CXCR3 and affects CD8 T cell trafficking to the TME
- CCL4: Drives increased CD8 T cell recruitment and DC maturation
Translation to the clinic

Pre-clinical discoveries

Laboratory

Clinic

Clinical trials
PI: Dr. Brendan Curti, MD

• Galectin Inhibitor (GR-MD-02) and Ipilimumab in Patients With Metastatic Melanoma (NCT02117362)
 • This trial was initiated in 2015, enrolled 7 subjects with GR-MD-02 doses of 1 and 2 mg/kg
 • There were no safety signals identified
 • In these initial cohorts, there were no notable changes in the peripheral immune signature
 • Due to changes in the standard of care for metastatic melanoma (i.e., approval of anti-PD-1), recruitment has been slowed significantly
Galectin Inhibitor (GR-MD-02) and Pembrolizumab in Patients with Metastatic Melanoma, Non-Small Lung Cancer and Head and Neck Squamous Cell Carcinoma (NCT02575404)

1. Pembrolizumab is FDA-approved to treat:
 a. Melanoma after progression on ipilimumab: RR = 26%
 b. Oral head and neck squamous cell carcinoma (OHN) after progression on platinum-containing chemo: RR = 18%
 c. Non-small cell lung cancer where there is tumor-expression of PD-L1 and disease progression on platinum-containing chemo (or agents targeting EGFR or ALK when those mutations are present): RR = 45%
Objectives

1. Primary
 a. Determine a safe dose of GR-MD-02 used in combination with pembrolizumab of 200 mg IV every 3 weeks

2. Secondary
 a. Measure the response rate to combined therapy with GR-MD-02 and pembrolizumab in patients with metastatic melanoma, OHN and NSCLC for whom pembrolizumab is considered standard of care
 b. Measure the response rate of combined therapy with GR-MD-02 and pembrolizumab in patients with metastatic melanoma, NSCLC or HNSCC with tumor progression after pembrolizumab monotherapy
 c. Assess the biological activity of GR-MD-02 and pembrolizumab
 i. Immune monitoring for changes in effector/memory T cells
 ii. Tumor-specific responses using autologous and/or HLA-matched tumor
 d. Examine the composition of the tumor immune infiltrate from tumor biopsies (when feasible)
Main inclusion criteria

1. Patients with metastatic or unresectable melanoma, OHN and NSCLC for whom pembrolizumab would be considered standard of care
2. Patients who have radiographic progression using RECIST criteria currently on pembrolizumab or who have recently discontinued pembrolizumab treatment and meet all other eligibility criteria are also eligible
3. Patients must be ≥ 18 years of age
4. ECOG performance status of 0-2
Main exclusion criteria

1. Patients who have previously received a galectin antagonist
2. Patients with active autoimmune disease except for autoimmune thyroiditis or vitiligo
3. Patients with history of autoimmune colitis
4. Patients with untreated brain metastases (pts w/ treated brain metastases who demonstrate control of brain metastases with follow-up imaging ≥4 wks post-Tx are eligible)
5. Need for chronic steroids (inhaled corticosteroids are acceptable)
Treatment regimen

1. Pembrolizumab 200 mg (fixed dose) + GR-MD-02 IV every 3 weeks
 a. GR-MD-02 is given for 5 doses
 b. Pembrolizumab can continue until disease progression

<table>
<thead>
<tr>
<th>Cohort</th>
<th>GR-MD-02 dose (mg/kg lean body mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2*</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8**</td>
</tr>
</tbody>
</table>

* Dose level completed, beginning enrollment to cohort 2
** Consideration will be given to increasing dose further, dependent upon responses and adverse events
Patient summary

(Cohort 1, 2 mg/kg GR-MD-02)

<table>
<thead>
<tr>
<th>Study Number</th>
<th>Diagnosis</th>
<th>Patient Current status</th>
<th>Patient Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWF_15-166</td>
<td>Melanoma</td>
<td>Enrolled</td>
<td>on treatment</td>
</tr>
<tr>
<td>RWF_15-166</td>
<td>Melanoma</td>
<td>Active FU</td>
<td>progression</td>
</tr>
<tr>
<td>RWF_15-166</td>
<td>Melanoma</td>
<td>Enrolled</td>
<td>mixed response</td>
</tr>
<tr>
<td>RWF_15-166</td>
<td>Melanoma</td>
<td>Enrolled</td>
<td>PR</td>
</tr>
<tr>
<td>RWF_15-166</td>
<td>Melanoma</td>
<td>Withdrawn</td>
<td>Not enrolled</td>
</tr>
<tr>
<td>RWF_15-166</td>
<td>OHN</td>
<td>Enrolled</td>
<td>progression</td>
</tr>
<tr>
<td>RWF_15-166</td>
<td>Melanoma</td>
<td>Enrolled</td>
<td>progression</td>
</tr>
<tr>
<td>RWF_15-166</td>
<td>OHN</td>
<td>Ineligible</td>
<td>Not enrolled</td>
</tr>
</tbody>
</table>

Note: Study design calls for 3 patients enrolled per cohort with 3 additional if there are adverse events. While there were no adverse events, 6 patients were enrolled because 3 had not completed protocol when others were identified.
Adverse events

(GR-MD-02 + Pembrolizumab)

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Attributed to Pembrolizumab</th>
<th>Attributed to GR-MD-02</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Flu Symptoms</td>
<td>X</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Pruritis</td>
<td>X</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Rash</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fatigue</td>
<td>X</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>X</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>X</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Decreased WBC</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Vitiigo</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Infusion Reaction</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Anemia</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Nasal Congestion</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tumor pain</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Watering eyes</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dry eyes</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dry Mouth</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Table summarizes maximum toxicity grade per patient attributed to study agent. Multiple instances of the same toxicity in an individual were counted only once.
Adverse events

(GR-MD-02 + Ipilimumab)

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Attributed to Ipilimumab</th>
<th>Attributed to GR-MD-02</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pruritis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Rash</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Fatigue</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Fever</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Infusion Reaction</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Decreased PMNs</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Table summarizes maximum toxicity grade per patient attributed to study agent. Multiple instances of the same toxicity in an individual were counted only once.
Immune monitoring

1. Peripheral blood
 a. CD4, CD8, Treg, Th1/Th2/Th17, Tcm/Tem
 b. Ki-67, CD38/HLA-DR, perforin, granzyme
 c. Monocyte/DC panels (M1/M2 polarization)
 d. MDSC

2. Multispectral imaging (IHC)

3. Serum cytokine/chemokines (multiplex ELISA)
Immune monitoring
(PBL)
Multispectral imaging
Multispectral imaging
(pre-treatment biopsy)
PR (on-going response)

Baseline
(5/6/16)

Week 12
(8/8/16)
PR (on-going response)

Baseline (5/6/16)

Week 12 (8/8/16)
Summary / future directions

1. GR-MD-02 plus immunotherapy augments anti-tumor immunity
 a. Reduced metastases, increased tumor regression, improved survival
 b. MOA?
 i. Cytokine/chemokine production
 ii. T cell function, M1/M2 polarization
 iii. Gene expression

2. First-in-human phase I clinical trials underway to test safety/efficacy of GR-MD-02 plus checkpoint blockade (melanoma, OHN, NSCLC)
 a. Immune monitoring and IHC analysis
 b. Progression to further development will be based on response rate as compared to historical response rates to pembrolizumab alone
Program Timelines

Phase 1: Pembrolizumab + GR-MD-02
- Cohort 1 complete (2017; Q1)
- Cohorts 2-3 (2018; Q2)

Phase 1 with T cell agonist
- Ph1: GR-MD-02 + aOX40 (2018; Q4)

Controlled Phase 2
- Ph2: GR-MD-02 + aPD-1 (start 2019; Q1)
Acknowledgements

Redmond Lab
- Michael McNamara, PhD
- Josh Walker, MD, PhD
- Elizabeth Sturgill, PhD
- Melissa Kasiewicz
- Ian Hilgart-Martiszus
- Courtney Mick
- Mohammad Farhad
- Dana Emerson
- Kathy Chilton
- Stefanie Linch, PhD

EACRI Vivarium

EACRI Immune Monitoring Lab
- Yoshinobu Koguchi, MD, PhD
- Iliana Gonzalez
- William Miller
- Tanisha Meeuwsen
- Valerie Conrad
- Ana Howells-Ferreira
- Tomasz Poplonski, MS

EACRI/Providence Cancer Center
- Brendan Curti, MD
- Christopher Fountain, RN

Galectin Therapeutics
- Peter Traber, MD

Patients and their families!!!